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Sources of Latency During Rendering 

§  Classical Pipeline: 

§  Latency: 

§  Idea: render more than one viewport  
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Viewport Independent Rendering 

§  Conceptional idea: 

§  Render the scene onto a sphere around the viewer 

§  If viewpoint rotates: just determine new cutout of the spherical 
viewport 

§  Practical implementation: use cube as a viewport around user, 
instead of sphere (see also Cave) 
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§  New pipeline: 

§  Latency: 
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Image Composition 

§  Conceptional idea: 

§  Each thread renders only "its own" object in its own framebuffer 

§  Video hardware reads framebuffer including Z-buffer 

§  Image compositor combines individual images by comparing Z per 
pixel 

§  In praxi:  

§  Partition set of objects 

§  Render each subset on one PC 
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Another technique: Prioritized Rendering 

§  Observation: images of objects far away from viewpoint (or slow 
relative to viewpoint) change slowly 

§  Idea: render onto several cuboid viewport "shells" around user 
§  Fastest objects on innermost shell, slowest/distant objects on outer shell 
§  Re-render innermost shell very often, outermost very rarely 

§  How many shells must be re-rendered depends on: 
§  Framerate required by application 
§  Complexity of scene 
§  Speed of viewpoint  
§  Speed of objects (relative to viewpoint) 

§  Human factors have influence on priority, too: 
§  Head cannot turn by 180° in one frame →  

objects "behind" must be updated only rarely 
§ Objects being manipulated must have highest priority 
§ Objects in peripheral field of vision can be updated less often 
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Constant Framerate by "Omitting" 

§  Reasons for a constant framerate: 
§  Prediction in predictive filtering of tracking data of head/hands works 

only, if all subsequent stages in the pipeline run at a known (constant) 
rate 

§  Jumps in framerate (e.g., from 60 to 30 Hz) are very noticeable 

§  Rendering is "time-critical computing":  
§  Rendering gets a certain time budget (e.g., 17 msec) 

§  Rendering algorithm has to produce an image "as good as possible" 

§  Techniques for "Omitting" stuff: 
§  Levels-of-Detail (LODs) 

§ Omit invisible geometry (Culling) 

§  Image-based rendering 

§  Reduce the lighting model, reduce amount of textures, 

§  ... ? 
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The Level-of-Detail Technique 

§  Definition: 
 A level-of-detail (LOD) of an object is a reduced version,  
 i.e. that has less polygons. 

§  Example: 
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§  Idea: render that LOD that fits the distance from the viewpoint, 
i.e., where users can't see the difference from the full-res. Version 

§  The technique consists of two tasks: 

1.  Preprocessing: for each object in the scene, generate k LODs 

2.  Runtime: select the "right" LODs, make switch unnoticeable 
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Selection of LOD 

§  Visual quality against "temporal quality" 
§  Static selection algorithm: 

§  Level i  for a distance range 

§  Depends on FoV 
§  Problem: size of objects 

is not considered 

§  For some desktop applications,  
e.g. terrain rendering,  
this is already sufficient: 

LOD 

100% 50% 30% 
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§  Dynamic selection algorithm: 

§  Estimate size of object on the screen 

§  Advantage: independent from screen resolution,  
FoV, size of objects 

§  LOD depends on distance automatically 
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Estimation of Size of Object on the Screen 

§  Naïve method: 

§  Compute bounding box (bbox) of object in 3D (probably already 
known) 

§  Project bbox in 2D → 8x 2D points 

§  Compute 2D bbox (axis aligned) around 8 points 

§  Better method: 

§  Compute true area of projected 3D bbox on screen 
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Idea of the Algorithm 

§  Determine number of sides of 3D bbox that are visible: 

§  Project only points on the silhouette (4 oder 6) in 2D: 

§  Compute area of this (convex!) polygon 
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Implementation 

§  For each pair of (parallel) box sides (i.e., each slab): 

classify viewpoint with respect to this pair into "below", "above", 

or "between" 

§  Yields 3x3x3 = 27 possibilities 

§  In other words: the sides of a cube partition space into 27 subsets 

§  Utilize bit-codes (à la out-codes from clipping) and a lookup-table 

§  Yields LUT with 26 entries (conceptually) 

§  27-1 entries of the LUT list each the 4 or 6 vertices of the silhouette 

§  Then, project, triangulate (determined by each casein LUT), 

accumulate areas 
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Psychophysiological LOD Selection 

§  Idea: exploit human facors with respect to 
visual accuity: 

§  Central / peripheral vision: 

§ Motion of obj (relative to viewpoint):   

§  Depth of obj (relative to horopter): 
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§  Determination of LODs: 

1.    

2.    

3.   Select level l  such that   
 
 
where Pl is the set of polygons of level l  of an object 

§  Do we need eye tracking for this to work? 

§  Disadvantages of eye tracking: expensive, imprecise, "intrusive" 

§  Psychophysiology: eyes always deviate < 15° from head direction 

§  So, assume eye direction = head direction, and choose  b1= 15°  

k = min{ki}·k0 , oder k =
�

ki ·k0

⇤p ⇥ Pl : r(p) � rmin

rmin = 1/k
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Reactive vs. Predictive LOD Selection 

§  Reactive LOD selection: 

§  Keep history of rendering durations 

§  Estimate duration Tr for next frame 

§  Let Tb = time budget that can be spent for next frame 

§  If Tr > Tb : decrease LODs (use coarser levels) 

§  If Tr < Tb: increase LODs (finer levels) 

§  Then, render frame and record time duration in history 
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§  Reactive LOD selection can produce severe outliers 

§  Example scenario: 
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Predicitive LOD Selection                  [Funkhouser und Sequin] 

§  Definition object tuple (O,L,R): 
 O = object, L = level, 
 R = rendering algo (#textures, anti-aliasing, #light sources) 

§  Evaluation functions on object tuples: 
 Cost(O,L,R)   = time needed for rendering 
 Benefit(O,L,R)  = "contribution to image" 

§  Optimization problem: 

      find  

      under the condition  

      where                S = { mögliche Objekt-Tupel in der Szene } 

max
S ��S

�

(O,L,R)⇥S �

benefit(O, L, R)

Tr =

X

(O,L,R)2S 0

cost(O, L, R)  Tb
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§  Cost-Funktion depends on: 

§  Number of vertices (~ # coord. transforms + lighting calcs + clipping) 

§  Setup per polygon 

§  Number of pixels (scanline conversions, alpha blending, textur fetching, 
anti-aliasing, phong shading) 

§  Theoretical cost model: 

 

 

§  Better determine the cost function by experiments: 
Render a number of different objects  
with all different parameter settings  
possible 

# polygons 

t 

Cost(O, L,R) = max

�
C1 ·Poly + C2 ·Vert

C3 ·Pixels

⇥
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§  Benefit funktion: "contribution" to image is affected by 

§  Size of object 

§  Shading method: 

§  Distance from center (periphery, depth) 

§  Velocity 

§  Semantic "importance" (e.g., grasped objects are very important) 

§  Hysteresis for penalizing LOD switches: 

§  Together: 

Rendering(O, L, R) =

�
⌅⇤

⌅⇥

1� c
pgons , flat

1� c
vert , Gouraud

1� c
vert , Phong

Benefit(O, L, R) =Size(O)·Rendering(O, L, R) ·
Importance(O)·O�Center(O) ·
Vel(O)·Hysteresis(O, L, R)

Hysterese(O, L, R) =
c1

1 + |L� L�| +
c2

1 + |R � R �|
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§  Optimization problem = "multiple-choice knapsack problem"  
→ NP-complete 

§  Idea: compute sub-optimal solution: 

§  Reduce it to continuous knapsack problem (see algorithms class)  

§  Solve it greedily with one additional constraint 

§  Define 

§  Sort all object tuples by value(O,L,R)  

§  Choose the first k tuples until knapsack is full 

§  Constraint: no 2 object tuples must represent the same object 

value(O, L, R) =
benefit(O, L, R)

cost(O, L, R)
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§  Incremenal solution: 

§  Start with solution                                                   as of last frame 

§  If 
 

 
then find object tuple                          ,  
such that 
 
 

and 

§  Analog, falls 

(Ok , Lk , Rk)

value(Ok , Lk + a, Rk + b)� value(Ok , Lk , Rk) = max

(O1, L1,1 ), . . . , (On, Ln,Rn)

X

i

cost(Oi , Li ,Ri)  max. frame time

X

i 6=k

cost(Oi , Li ,Ri) + cost(Ok , Lk + a,Rk + b)  max. frame time

X

i

cost(Oi , Li ,Ri) > max. frame time
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§  Performance in the  
example scenes: 
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Screenshots from the Example Scenes 

§  Screenshots aus der Beispiel-Szene: 

No detail elision, 19,821 polygons     Optimization, 1,389 polys,    
0.1 sec/frame target frame time 

Level of detail: darker 
gray means more detail 
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Problem with Discrete LODs 

§  "Popping" when switching to next higher/lower level 

§  Measures against "popping": 

§  Hysteresis (just reduces the frequency of pops a little bit) 

§  Alpha blending of the two adjacent LOD levels 

-  Man kommt vom Regen in die Traufe ;-)  

§  Continuous, view-dependent LODs 
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Alpha-LODs 

§  Simple idea to avoid popping:  
when beyond a certain range, fade out level i until gone, 
at the same time fade in level i+1 
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Progressive Meshes 

§  A.k.a. Geomorph-LODs 

§  Initial idea / goal: 

§  Given two meshes Mi and Mi+1 (LODs of the same object) 

§  Construct mesh M' "in-between" Mi and Mi+1  

§  In the following, we will do more 

§  Definition: Progressive Mesh = representation of an object, 
starting with a high-resolution mesh M0, with which one can 
continuously (up to the edge level) generate "in-between" 
meshes ranging from 1 polygon up to M0 (and do that extremely 
fast). 
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Construction of Progressive Meshes 

§  Approach: successive simplification, until only 1 polygon left 

§  The fundamental opetration: edge collapse 

§  Reverse operation = vertex split 

§  Not every edge can be chosen: bad edge collapses 

v u 
v 

v u 

edge crossing! 
polygon overlap 
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§  The order of edge collapses is important:  

§  Introduce measure on edge collapses, in order to evaluate "visual effect" 

§  Goal: perform first edge collapses that have the least visual effect 

§  Remark: after every edge collapse, all remaining edges need to be 
evaluated again, because their "visual effect" (if collapsed) might 
be different now 

u v v u 
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§  Evaluation function for edge collapses is not trivial and, more 
importantly, perception-based! 

§  Factors influencing "visual effect": 

§  Curvature of edge / surface 

§  Lighting, texturing, viewpoint (highlights!) 

§  Semantics of the geometry (eyes & mouth are very important in faces) 

§  Examples of a progressive mesh: 
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§  Representation of a progressive meshes: 

§ Mi+1 = i-th refinement =  
1 vertex more than Mi  

§  Representation of an 
edge collapse / vertex split: 

§  Edge (= pair of vertices) affected by the collapse/split 

§  Position of the "new" vertex 

§  Triangles that need to be deleted / inserted 

ecol 

vsplit 

M = Mn	 M1	 M0	…	
ecoln-1 ecol0 ecol1 

vsplitn-1 vsplit0 vsplit1 
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Example for a Simple Edge Evaluation Function 

§  Follow this heuristic: 

§  Delete small edges first 

§ Move vertex U onto vertex V, if surface incident to U has smaller 
(discrete) curvature than surface around V 

§  A simple measure for an edge collapse from U onto V: 

U 
V n1 

n2 
nf 

cost(U , V ) = ⇥U � V ⇥·curv(U)

curv(U) = 1
2

�
1 � min

f �T (U)\T (V )
max
i=1,2

nf ni

⇥
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§  Remark:  

 

§  Example: 

cost(U , V ) �= cost(V , U)

Wanted 

Only later 
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Demo 

[Michael Garland: Qslim] 

How can the Funkhouser-Sequin algorithms 
be combined with progressiven meshes? 

Diplomarbeit … 
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Digression: other Kinds of LODs 

§  Idea: apply LOD technique to other non-geometric content 

§  E.g. "behavioral LOD": 

§  Simulate the behavior of an object exactly if in focus, otherwise 
simulate it only "approximately" 
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Culling in Buildings (Portal Culling) 

§  Observation: many rooms within the viewing frustum are not 
visible 

§  Idea: 

§  Partition the VE into "cells" 

§  Precompute cell-to-cell-visibility → visibility graph 
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§  During runtime, filter cells from visibility graph by viewpoint and 
viewing frustum: 
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§  State in OpenGL rendering = 
§  Combination of all attributes 

§  Examples for attributes: color, material, lighting parameters, number 
of textures being used, shader program, etc. 

§  At any time, each attribute has exactly 1 value out of a set of possible 
attributes (e.g., color∈{ (0,0,0), …, (255,255,255) } 

§  State changes are a serious performance killer! 

§  Costs: 

§  Goal: render complete scene graph with minimal number of state 
changes 

§  "Solution": pre-sorting 

Matrix stack  
modification 

Lighting 
modification 

Texture 
modification 

Shader program 
modification 

State Sorting 
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§  Problem: optimal solution is NP-complete 

§  Reason: 

§  Each leaf of the scene graph can be  
regarded a node in a  
complete graph 

§  Costs of an edge = costs of the  
corresponding state change 
(different state changes cost  
differently, e.g., changing the 
transform is cheap)  

§ Wanted: shortest path through graph 

à Traveling Salesman Problem 

§  Further problem: precomputation doesn't work with dynamic 
scenes and occlusion culling 

Scenegraph 
leaf 

Last part of  
the state:  

e.g., material 1st part of the 
state: e.g., light 

source 
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Introducing the Sorting Buffer 

§  Idea & abstraction: 

§  For sake of argument: just consider 1 attribute ("color") 

§  Introduce buffer between application and graphics card 

-  (Could be incorporated into driver / hardware, since an OpenGL command 
buffer is already in place) 

§  Buffer contains elements with different colors 

§ With each rendering step (=app sends "colored element" to hardware/
buffer), perform one of 3 operations: 

1.  Pass element directly on to graphics hardware 

2.  Store element in buffer 

3.  Extract subset of elements from buffer and send them to graphics hardware 

Graphics hardware Sequence of objs Buffer for state sorting 
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A Special Class of Algorithms 

§  There are 2 categories of algorithms: 

§  "Online" algorithms: algo does not know elements that will be received in 
the future! 

§  "Offline" algorithms: Algo does kow elements that will be received in the 
future (for a fair comparison, it still has to store/extract them in a buffer, 
but it can utilize its knowledge of the future to decide whether to store it) 

§  In the following, we consider w.l.o.g only the "lazy" online strategy: 

§  Extract elements from the buffer only in case of buffer overflow 

§  Because every non-lazy online strategy can be converted into a lazy online 
strategy with same complexity (= costs) 

§  Question in our case: which elements should be extracted from the 
buffer (in case of buffer overflow), so that we achieve the minimal 
number of color changes? 
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Competitive Analysis 

§  Definition c-competitive : 
 Let              = Costs (= number of color changes) of optimal  
 offline strategy, k = buffer size.  
 Let              = costs of some online strategy. 
 Then, this strategy is called "c-competitive" iff 

  
 where a must not depend on k. 
 The ratio 

 
 is called the competitive-ratio. 

§  Wanted: an online strategy with a c as small as possible 
(in the worst-case, and — more importantly — in the average case) 

C
o↵

(k)

C
on

(k)

C
on

(k) = c ·C
o↵

(k) + a

C
on

(k)

C
o↵

(k)
⇡ c



G. Zachmann 48 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS 

Example: LRU strategy (least-recently used) 

§  The strategy: 

§ Maintain a timestamp per color (not per element!) 

§  An element gets stored in buffer →  
timestamp of its color is set to current time 

-  Notice: timestamps of other elements in buffer can change, too 

§  Buffer overflow → extract elements, whose color has oldest timestamp 

§  The lower bound on the competitive-ratio: 

§  Proof by example: 

§  Set                             , w.l.o.g.  m  even 

§  Choose the input   

§  Costs of the online LRU strategy:                            color changes 

§  Costs of the offline strategy:  2m color changes, 
because its output is =  

(m + 1)·2·m2

(xky k)
m
2
c

m
1 · · · cmm
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The Bounded Waste & the Random Choice Strategy 

§  Idea:  
§  Count the number of all elements that have the same color 

§  Extract those elements whose color is most prevalent in the buffer 

§  Introduce waste counter W(c) : 
§ With color change on input side: increment W(c) 

§  Bounded waste strategy: 
§ With buffer overflow, extract all elements of color c', whose W(c') = max 

§  Competitive ratio (w/o proof):    

§  Random choice  strategy: 
§  Randomized version of bounded waste strategy 

§  Choose uniformly a random element in buffer, extract all elements with 
same color (most prevalent color in buffer has highest probability) 

§  Consequence: more prevalent color gets chosen more often, over time 
each color gets chosen W(c) times 

O
�
log

2 k
�
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The Round Robin Strategy 

§  Problem: generation of good random numbers is fairly costly 

§  Round robin strategy: 

§  Variant of random choice strategy 

§  Don't choose a random slot in the buffer,  

§  Instead, every time choose the next slot 

§ Maintain pointer to current slot, move pointer to next slot every time a 
slot is chosen 
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Comparison 

§  Take-home message: 

§  Round-robin yields very good results (although 
very simple) 

§ Worst case doesn't say too much about 
performance in real-world applications 
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Stereo without rendering 2x (simple image warping) 

§  Observation: left & right image differ not very much 

§  Idea: render 1x for right image, then move pixels for left image 

§  Algo: consider all pixels on each scanline from right to left, 
draw each pixel k at the new x-position 

§  Problems:  

§  Holes! 

§  Up vector must be vertical 

§  Reflections and specular  
highlights are at wrong position 

§  Aliasing 
i 

z0 

zk 

? 

x �
k = xk +

i

�

zk

zk + z0
, � = Pixelbreite
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Image Warping 

§  A naïve VR system: 

§  Latency in this system (stereo with 60 Hz → display refresh = 120 Hz): 

Tracking 
system 

T0 T4 

Appl. 
(Simul.) 

T1 

Renderer 
T2 

Display 
(e.g. HMD) 

T3 User 

L R L R Display 

16.6 ms 

System 

T0 

Tracker 

T4 

New appl. frame 

10 ms 

T1 

Application (Simul) Renderer 

T2 

30 ms 

T3 

swaplock 

50 ms 8 ms 
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§  Problems / observations: 

§  The app. framerate (incl. rendering) is typically much slower than the 
display refresh rate 

§  The tracking data, which led to a specific image, were valid in the 
distant past 

§  The tracker could deliver data more often 

§  Consecutive frames differ from each other (most of the time) only 
relatively little (→ temporal coherence) 

L R L R Display 

16.6 ms 

System 

T0 

Tracker 

T4 

neues Appl.-"Frame" 

10 ms 

T1 

Application (Simul) Renderer 

T2 

30 ms 

T3 swaplock 

50 ms 8 ms 
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Idea for a Solution                     [2009] 

§  Decouple simulation/animation, rendering, and device polling: 

 

Object transform., 
camera- position 

Input devices (tracker) 

Simulation / Animation 

Shared 
Scene Graph 

Appl. renderer 
(client) 

GPU 1 shared memory GPU 2 

Display 

Warping 
renderer 
(server) Only 

object  
Transf. 

20 Hz 

FBO 

60 Hz Transform 
10242x GL_POINTs 

Camera pos. 

Texture 
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An Application Frame (Client) 

§  At time t1, the application renderer generates a normal frame 

§  Color buffer and Z-buffer 

§  … but additionally saves some information: 

1.  With each pixel, save ID of object visible at that pixel 

2.  Camera transformations at time t1  

3.  With each object  i , save its transformation 

Tt1,cam�img , Tt1,wld�cam
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Warping of a Frame (Server) 

§  At a later time t2 , the server generates an image from an 
application frame by warping 

§  Transformations at this time: 

§  A pixel                 in the app. frame will be "warped" to its 
correct position in the (new) server frame: 

 

 

 

§  This transform. matrix can be  
precomputed for each object  
with each new server frame 

t1 

t2 

App. frame → 

← Server frame 

T i
t2,wld�obj Tt2,img�cam Tt2,cam�wld
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Remarks 

§  Implementation of the warping: 

§  In the vertex shader 

-  Doesn't work in the fragment shader, because the output (= pixel) position is 
fixed in fragment shaders! 

§ Warping renderer treats the image in the FBO containing the app 
frame as a texture , and it loads all the Ti’s 

§  Render 1024x1024 many GL_POINTs (called point splats) 
 

§  Advantages: 

§  The frames (visible to the user) are now "more current", because of 
more current camera and object positions 

§  Server framerate is independent of number of polygons 
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§  Problems: 
§  Holes in server frame 

-  Need to fill them, e.g., by ray casting 

§  Server frames are fuzzy (unscharf)  
(because of point splats) 

§  How much should the point splats be?  

§  The application renderer (full image 
renderer) can be only so slow 
(if it's too slow, then server frames 
become too bad) 

§  Unfilled parts along the border 
of the server frames  
-  Could make the viewing frustum for the app frames larger … 

§  Performance gain: 
§  12m polygons, 800 x 600 

§  Factor ~20 faster 

t1 

t2 

Loch! 
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Videos 
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