
Virtual Reality
Real-time Rendering

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Sources of Latency During Rendering

§  Classical Pipeline:

§  Latency:

§  Idea: render more than one viewport

render

he
ad

sw
ap

display

Scene graph
traversal Transform

Culling

Clipping
Viewport
mapping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Head
pos & ori

Main
loop

Main
loop

G. Zachmann 3 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Viewport Independent Rendering

§  Conceptional idea:

§  Render the scene onto a sphere around the viewer

§  If viewpoint rotates: just determine new cutout of the spherical
viewport

§  Practical implementation: use cube as a viewport around user,
instead of sphere (see also Cave)

G. Zachmann 4 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  New pipeline:

§  Latency:

Scene graph
traversal

Transform

Classification Clipping

Fr
on

t b
uf

fe
r

Ba
ck

 b
uf

fe
r

Pixel scan

DAC RGB

Viewport
mapping

Head orientation

Locate
pixel

Anti-Aliasing

render

he
ad

sw

ap

display

Head
pos

Main
loop

Main
loop

G. Zachmann 5 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Image Composition

§  Conceptional idea:

§  Each thread renders only "its own" object in its own framebuffer

§  Video hardware reads framebuffer including Z-buffer

§  Image compositor combines individual images by comparing Z per
pixel

§  In praxi:

§  Partition set of objects

§  Render each subset on one PC

G. Zachmann 6 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Another technique: Prioritized Rendering

§  Observation: images of objects far away from viewpoint (or slow
relative to viewpoint) change slowly

§  Idea: render onto several cuboid viewport "shells" around user
§  Fastest objects on innermost shell, slowest/distant objects on outer shell
§  Re-render innermost shell very often, outermost very rarely

§  How many shells must be re-rendered depends on:
§  Framerate required by application
§  Complexity of scene
§  Speed of viewpoint
§  Speed of objects (relative to viewpoint)

§  Human factors have influence on priority, too:
§  Head cannot turn by 180° in one frame →

objects "behind" must be updated only rarely
§ Objects being manipulated must have highest priority
§ Objects in peripheral field of vision can be updated less often

G. Zachmann 7 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Constant Framerate by "Omitting"

§  Reasons for a constant framerate:
§  Prediction in predictive filtering of tracking data of head/hands works

only, if all subsequent stages in the pipeline run at a known (constant)
rate

§  Jumps in framerate (e.g., from 60 to 30 Hz) are very noticeable

§  Rendering is "time-critical computing":
§  Rendering gets a certain time budget (e.g., 17 msec)

§  Rendering algorithm has to produce an image "as good as possible"

§  Techniques for "Omitting" stuff:
§  Levels-of-Detail (LODs)

§ Omit invisible geometry (Culling)

§  Image-based rendering

§  Reduce the lighting model, reduce amount of textures,

§  ... ?

G. Zachmann 8 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

The Level-of-Detail Technique

§  Definition:
 A level-of-detail (LOD) of an object is a reduced version,
 i.e. that has less polygons.

§  Example:

G. Zachmann 9 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Idea: render that LOD that fits the distance from the viewpoint,
i.e., where users can't see the difference from the full-res. Version

§  The technique consists of two tasks:

1.  Preprocessing: for each object in the scene, generate k LODs

2.  Runtime: select the "right" LODs, make switch unnoticeable

G. Zachmann 10 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Selection of LOD

§  Visual quality against "temporal quality"
§  Static selection algorithm:

§  Level i for a distance range

§  Depends on FoV
§  Problem: size of objects

is not considered

§  For some desktop applications,
e.g. terrain rendering,
this is already sufficient:

LOD

100% 50% 30%

G. Zachmann 11 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Dynamic selection algorithm:

§  Estimate size of object on the screen

§  Advantage: independent from screen resolution,
FoV, size of objects

§  LOD depends on distance automatically

G. Zachmann 12 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Estimation of Size of Object on the Screen

§  Naïve method:

§  Compute bounding box (bbox) of object in 3D (probably already
known)

§  Project bbox in 2D → 8x 2D points

§  Compute 2D bbox (axis aligned) around 8 points

§  Better method:

§  Compute true area of projected 3D bbox on screen

G. Zachmann 13 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Idea of the Algorithm

§  Determine number of sides of 3D bbox that are visible:

§  Project only points on the silhouette (4 oder 6) in 2D:

§  Compute area of this (convex!) polygon

G. Zachmann 14 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Implementation

§  For each pair of (parallel) box sides (i.e., each slab):

classify viewpoint with respect to this pair into "below", "above",

or "between"

§  Yields 3x3x3 = 27 possibilities

§  In other words: the sides of a cube partition space into 27 subsets

§  Utilize bit-codes (à la out-codes from clipping) and a lookup-table

§  Yields LUT with 26 entries (conceptually)

§  27-1 entries of the LUT list each the 4 or 6 vertices of the silhouette

§  Then, project, triangulate (determined by each casein LUT),

accumulate areas

G. Zachmann 15 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Psychophysiological LOD Selection

§  Idea: exploit human facors with respect to
visual accuity:

§  Central / peripheral vision:

§ Motion of obj (relative to viewpoint):

§  Depth of obj (relative to horopter):

b1 θ

t0

t1

Δϕ

ϕ0

ϕ1

b1

1

k1 =

�
e�(�–b1)/c1 , � > b1

1 , sonst

G. Zachmann 16 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Determination of LODs:

1. 

2. 

3.  Select level l such that

where Pl is the set of polygons of level l of an object

§  Do we need eye tracking for this to work?

§  Disadvantages of eye tracking: expensive, imprecise, "intrusive"

§  Psychophysiology: eyes always deviate < 15° from head direction

§  So, assume eye direction = head direction, and choose b1= 15°

k = min{ki}·k0 , oder k =
�

ki ·k0

⇤p ⇥ Pl : r(p) � rmin

rmin = 1/k

G. Zachmann 17 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Reactive vs. Predictive LOD Selection

§  Reactive LOD selection:

§  Keep history of rendering durations

§  Estimate duration Tr for next frame

§  Let Tb = time budget that can be spent for next frame

§  If Tr > Tb : decrease LODs (use coarser levels)

§  If Tr < Tb: increase LODs (finer levels)

§  Then, render frame and record time duration in history

G. Zachmann 18 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Reactive LOD selection can produce severe outliers

§  Example scenario:

G. Zachmann 19 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Predicitive LOD Selection [Funkhouser und Sequin]

§  Definition object tuple (O,L,R):
 O = object, L = level,
 R = rendering algo (#textures, anti-aliasing, #light sources)

§  Evaluation functions on object tuples:
 Cost(O,L,R) = time needed for rendering
 Benefit(O,L,R) = "contribution to image"

§  Optimization problem:

 find

 under the condition

 where S = { mögliche Objekt-Tupel in der Szene }

max
S ��S

�

(O,L,R)⇥S �

benefit(O, L, R)

Tr =

X

(O,L,R)2S 0

cost(O, L, R) Tb

G. Zachmann 20 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Cost-Funktion depends on:

§  Number of vertices (~ # coord. transforms + lighting calcs + clipping)

§  Setup per polygon

§  Number of pixels (scanline conversions, alpha blending, textur fetching,
anti-aliasing, phong shading)

§  Theoretical cost model:

§  Better determine the cost function by experiments:
Render a number of different objects
with all different parameter settings
possible

polygons

t

Cost(O, L,R) = max

�
C1 ·Poly + C2 ·Vert

C3 ·Pixels

⇥

G. Zachmann 21 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Benefit funktion: "contribution" to image is affected by

§  Size of object

§  Shading method:

§  Distance from center (periphery, depth)

§  Velocity

§  Semantic "importance" (e.g., grasped objects are very important)

§  Hysteresis for penalizing LOD switches:

§  Together:

Rendering(O, L, R) =

�
⌅⇤

⌅⇥

1� c
pgons , flat

1� c
vert , Gouraud

1� c
vert , Phong

Benefit(O, L, R) =Size(O)·Rendering(O, L, R) ·
Importance(O)·O�Center(O) ·
Vel(O)·Hysteresis(O, L, R)

Hysterese(O, L, R) =
c1

1 + |L� L�| +
c2

1 + |R � R �|

G. Zachmann 22 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Optimization problem = "multiple-choice knapsack problem"
→ NP-complete

§  Idea: compute sub-optimal solution:

§  Reduce it to continuous knapsack problem (see algorithms class)

§  Solve it greedily with one additional constraint

§  Define

§  Sort all object tuples by value(O,L,R)

§  Choose the first k tuples until knapsack is full

§  Constraint: no 2 object tuples must represent the same object

value(O, L, R) =
benefit(O, L, R)

cost(O, L, R)

G. Zachmann 23 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Incremenal solution:

§  Start with solution as of last frame

§  If

then find object tuple ,
such that

and

§  Analog, falls

(Ok , Lk , Rk)

value(Ok , Lk + a, Rk + b)� value(Ok , Lk , Rk) = max

(O1, L1,1), . . . , (On, Ln,Rn)

X

i

cost(Oi , Li ,Ri) max. frame time

X

i 6=k

cost(Oi , Li ,Ri) + cost(Ok , Lk + a,Rk + b) max. frame time

X

i

cost(Oi , Li ,Ri) > max. frame time

G. Zachmann 24 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Performance in the
example scenes:

G. Zachmann 25 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Screenshots from the Example Scenes

§  Screenshots aus der Beispiel-Szene:

No detail elision, 19,821 polygons Optimization, 1,389 polys,
0.1 sec/frame target frame time

Level of detail: darker
gray means more detail

G. Zachmann 30 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Problem with Discrete LODs

§  "Popping" when switching to next higher/lower level

§  Measures against "popping":

§  Hysteresis (just reduces the frequency of pops a little bit)

§  Alpha blending of the two adjacent LOD levels

-  Man kommt vom Regen in die Traufe ;-)

§  Continuous, view-dependent LODs

G. Zachmann 31 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Alpha-LODs

§  Simple idea to avoid popping:
when beyond a certain range, fade out level i until gone,
at the same time fade in level i+1

G. Zachmann 32 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Progressive Meshes

§  A.k.a. Geomorph-LODs

§  Initial idea / goal:

§  Given two meshes Mi and Mi+1 (LODs of the same object)

§  Construct mesh M' "in-between" Mi and Mi+1

§  In the following, we will do more

§  Definition: Progressive Mesh = representation of an object,
starting with a high-resolution mesh M0, with which one can
continuously (up to the edge level) generate "in-between"
meshes ranging from 1 polygon up to M0 (and do that extremely
fast).

G. Zachmann 33 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Construction of Progressive Meshes

§  Approach: successive simplification, until only 1 polygon left

§  The fundamental opetration: edge collapse

§  Reverse operation = vertex split

§  Not every edge can be chosen: bad edge collapses

v u
v

v u

edge crossing!
polygon overlap

G. Zachmann 34 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  The order of edge collapses is important:

§  Introduce measure on edge collapses, in order to evaluate "visual effect"

§  Goal: perform first edge collapses that have the least visual effect

§  Remark: after every edge collapse, all remaining edges need to be
evaluated again, because their "visual effect" (if collapsed) might
be different now

u v v u

G. Zachmann 35 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Evaluation function for edge collapses is not trivial and, more
importantly, perception-based!

§  Factors influencing "visual effect":

§  Curvature of edge / surface

§  Lighting, texturing, viewpoint (highlights!)

§  Semantics of the geometry (eyes & mouth are very important in faces)

§  Examples of a progressive mesh:

G. Zachmann 36 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Representation of a progressive meshes:

§ Mi+1 = i-th refinement =
1 vertex more than Mi

§  Representation of an
edge collapse / vertex split:

§  Edge (= pair of vertices) affected by the collapse/split

§  Position of the "new" vertex

§  Triangles that need to be deleted / inserted

ecol

vsplit

M = Mn	 M1	 M0	…	
ecoln-1 ecol0 ecol1

vsplitn-1 vsplit0 vsplit1

G. Zachmann 37 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Example for a Simple Edge Evaluation Function

§  Follow this heuristic:

§  Delete small edges first

§ Move vertex U onto vertex V, if surface incident to U has smaller
(discrete) curvature than surface around V

§  A simple measure for an edge collapse from U onto V:

U
V n1

n2
nf

cost(U , V) = ⇥U � V ⇥·curv(U)

curv(U) = 1
2

�
1 � min

f �T (U)\T (V)
max
i=1,2

nf ni

⇥

G. Zachmann 38 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Remark:

§  Example:

cost(U , V) �= cost(V , U)

Wanted

Only later

G. Zachmann 39 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Demo

[Michael Garland: Qslim]

How can the Funkhouser-Sequin algorithms
be combined with progressiven meshes?

Diplomarbeit …

G. Zachmann 40 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Digression: other Kinds of LODs

§  Idea: apply LOD technique to other non-geometric content

§  E.g. "behavioral LOD":

§  Simulate the behavior of an object exactly if in focus, otherwise
simulate it only "approximately"

G. Zachmann 41 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Culling in Buildings (Portal Culling)

§  Observation: many rooms within the viewing frustum are not
visible

§  Idea:

§  Partition the VE into "cells"

§  Precompute cell-to-cell-visibility → visibility graph

G. Zachmann 42 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  During runtime, filter cells from visibility graph by viewpoint and
viewing frustum:

G. Zachmann 43 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  State in OpenGL rendering =
§  Combination of all attributes

§  Examples for attributes: color, material, lighting parameters, number
of textures being used, shader program, etc.

§  At any time, each attribute has exactly 1 value out of a set of possible
attributes (e.g., color∈{ (0,0,0), …, (255,255,255) }

§  State changes are a serious performance killer!

§  Costs:

§  Goal: render complete scene graph with minimal number of state
changes

§  "Solution": pre-sorting

Matrix stack
modification

Lighting
modification

Texture
modification

Shader program
modification

State Sorting

G. Zachmann 44 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Problem: optimal solution is NP-complete

§  Reason:

§  Each leaf of the scene graph can be
regarded a node in a
complete graph

§  Costs of an edge = costs of the
corresponding state change
(different state changes cost
differently, e.g., changing the
transform is cheap)

§ Wanted: shortest path through graph

à Traveling Salesman Problem

§  Further problem: precomputation doesn't work with dynamic
scenes and occlusion culling

Scenegraph
leaf

Last part of
the state:

e.g., material 1st part of the
state: e.g., light

source

G. Zachmann 45 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Introducing the Sorting Buffer

§  Idea & abstraction:

§  For sake of argument: just consider 1 attribute ("color")

§  Introduce buffer between application and graphics card

-  (Could be incorporated into driver / hardware, since an OpenGL command
buffer is already in place)

§  Buffer contains elements with different colors

§ With each rendering step (=app sends "colored element" to hardware/
buffer), perform one of 3 operations:

1.  Pass element directly on to graphics hardware

2.  Store element in buffer

3.  Extract subset of elements from buffer and send them to graphics hardware

Graphics hardware Sequence of objs Buffer for state sorting

G. Zachmann 46 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

A Special Class of Algorithms

§  There are 2 categories of algorithms:

§  "Online" algorithms: algo does not know elements that will be received in
the future!

§  "Offline" algorithms: Algo does kow elements that will be received in the
future (for a fair comparison, it still has to store/extract them in a buffer,
but it can utilize its knowledge of the future to decide whether to store it)

§  In the following, we consider w.l.o.g only the "lazy" online strategy:

§  Extract elements from the buffer only in case of buffer overflow

§  Because every non-lazy online strategy can be converted into a lazy online
strategy with same complexity (= costs)

§  Question in our case: which elements should be extracted from the
buffer (in case of buffer overflow), so that we achieve the minimal
number of color changes?

G. Zachmann 47 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Competitive Analysis

§  Definition c-competitive :
 Let = Costs (= number of color changes) of optimal
 offline strategy, k = buffer size.
 Let = costs of some online strategy.
 Then, this strategy is called "c-competitive" iff

 where a must not depend on k.
 The ratio

 is called the competitive-ratio.

§  Wanted: an online strategy with a c as small as possible
(in the worst-case, and — more importantly — in the average case)

C
o↵

(k)

C
on

(k)

C
on

(k) = c ·C
o↵

(k) + a

C
on

(k)

C
o↵

(k)
⇡ c

G. Zachmann 48 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Example: LRU strategy (least-recently used)

§  The strategy:

§ Maintain a timestamp per color (not per element!)

§  An element gets stored in buffer →
timestamp of its color is set to current time

-  Notice: timestamps of other elements in buffer can change, too

§  Buffer overflow → extract elements, whose color has oldest timestamp

§  The lower bound on the competitive-ratio:

§  Proof by example:

§  Set , w.l.o.g. m even

§  Choose the input

§  Costs of the online LRU strategy: color changes

§  Costs of the offline strategy: 2m color changes,
because its output is =

(m + 1)·2·m2

(xky k)
m
2
c

m
1 · · · cmm

G. Zachmann 49 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

The Bounded Waste & the Random Choice Strategy

§  Idea:
§  Count the number of all elements that have the same color

§  Extract those elements whose color is most prevalent in the buffer

§  Introduce waste counter W(c) :
§ With color change on input side: increment W(c)

§  Bounded waste strategy:
§ With buffer overflow, extract all elements of color c', whose W(c') = max

§  Competitive ratio (w/o proof):

§  Random choice strategy:
§  Randomized version of bounded waste strategy

§  Choose uniformly a random element in buffer, extract all elements with
same color (most prevalent color in buffer has highest probability)

§  Consequence: more prevalent color gets chosen more often, over time
each color gets chosen W(c) times

O
�
log

2 k
�

G. Zachmann 50 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

The Round Robin Strategy

§  Problem: generation of good random numbers is fairly costly

§  Round robin strategy:

§  Variant of random choice strategy

§  Don't choose a random slot in the buffer,

§  Instead, every time choose the next slot

§ Maintain pointer to current slot, move pointer to next slot every time a
slot is chosen

G. Zachmann 51 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Comparison

§  Take-home message:

§  Round-robin yields very good results (although
very simple)

§ Worst case doesn't say too much about
performance in real-world applications

G. Zachmann 52 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Stereo without rendering 2x (simple image warping)

§  Observation: left & right image differ not very much

§  Idea: render 1x for right image, then move pixels for left image

§  Algo: consider all pixels on each scanline from right to left,
draw each pixel k at the new x-position

§  Problems:

§  Holes!

§  Up vector must be vertical

§  Reflections and specular
highlights are at wrong position

§  Aliasing
i

z0

zk

?

x �
k = xk +

i

�

zk

zk + z0
, � = Pixelbreite

G. Zachmann 53 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Image Warping

§  A naïve VR system:

§  Latency in this system (stereo with 60 Hz → display refresh = 120 Hz):

Tracking
system

T0 T4

Appl.
(Simul.)

T1

Renderer
T2

Display
(e.g. HMD)

T3 User

L R L R Display

16.6 ms

System

T0

Tracker

T4

New appl. frame

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3

swaplock

50 ms 8 ms

G. Zachmann 54 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Problems / observations:

§  The app. framerate (incl. rendering) is typically much slower than the
display refresh rate

§  The tracking data, which led to a specific image, were valid in the
distant past

§  The tracker could deliver data more often

§  Consecutive frames differ from each other (most of the time) only
relatively little (→ temporal coherence)

L R L R Display

16.6 ms

System

T0

Tracker

T4

neues Appl.-"Frame"

10 ms

T1

Application (Simul) Renderer

T2

30 ms

T3 swaplock

50 ms 8 ms

G. Zachmann 55 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Idea for a Solution [2009]

§  Decouple simulation/animation, rendering, and device polling:

Object transform.,
camera- position

Input devices (tracker)

Simulation / Animation

Shared
Scene Graph

Appl. renderer
(client)

GPU 1 shared memory GPU 2

Display

Warping
renderer
(server) Only

object
Transf.

20 Hz

FBO

60 Hz Transform
10242x GL_POINTs

Camera pos.

Texture

G. Zachmann 56 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

An Application Frame (Client)

§  At time t1, the application renderer generates a normal frame

§  Color buffer and Z-buffer

§  … but additionally saves some information:

1.  With each pixel, save ID of object visible at that pixel

2.  Camera transformations at time t1

3.  With each object i , save its transformation

Tt1,cam�img , Tt1,wld�cam

G. Zachmann 57 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Warping of a Frame (Server)

§  At a later time t2 , the server generates an image from an
application frame by warping

§  Transformations at this time:

§  A pixel in the app. frame will be "warped" to its
correct position in the (new) server frame:

§  This transform. matrix can be
precomputed for each object
with each new server frame

t1

t2

App. frame →

← Server frame

T i
t2,wld�obj Tt2,img�cam Tt2,cam�wld

G. Zachmann 58 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

PA
Appl-Frame
(t1)

PA
Appl Frame
(t1)

-z

Camera (t1)

y

x

-z
Camera (t1)

y

x

x

World (t1)

y

z

x
World (t1)

y

z

x

Object

y

z

P

x
Object

y

z

P

x

World (t2)

y

z

x
World (t2)

y

z

-z

Camera (t2)

y

x

P

-z
Camera (t2)

y

x

P

PA Warped
Server-Frame
(t2)

PS

PA
Warped
Server Frame
(t2)

PS

G. Zachmann 59 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Remarks

§  Implementation of the warping:

§  In the vertex shader

-  Doesn't work in the fragment shader, because the output (= pixel) position is
fixed in fragment shaders!

§ Warping renderer treats the image in the FBO containing the app
frame as a texture , and it loads all the Ti’s

§  Render 1024x1024 many GL_POINTs (called point splats)

§  Advantages:

§  The frames (visible to the user) are now "more current", because of
more current camera and object positions

§  Server framerate is independent of number of polygons

G. Zachmann 60 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

§  Problems:
§  Holes in server frame

-  Need to fill them, e.g., by ray casting

§  Server frames are fuzzy (unscharf)
(because of point splats)

§  How much should the point splats be?

§  The application renderer (full image
renderer) can be only so slow
(if it's too slow, then server frames
become too bad)

§  Unfilled parts along the border
of the server frames
-  Could make the viewing frustum for the app frames larger …

§  Performance gain:
§  12m polygons, 800 x 600

§  Factor ~20 faster

t1

t2

Loch!

G. Zachmann 61 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

Videos

G. Zachmann 62 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

G. Zachmann 63 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

G. Zachmann 64 Real-Time Rendering Virtual Reality & Simulation 9 November 2012 WS

